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OWSCI Underground Storage Assessment 

Abstract 
 
The overarching goal of the Oregon Water Supply and Conservation Initiative (OWSCI) is to 
provide a foundation for improved long-term water resource planning.  The Initiative includes 
statewide water demand forecasting, an inventory of potential conservation opportunities, 
identification of potential above and below ground storage sites, and community water 
planning grants.  In addition to data collection, two important products of this Initiative 
include the methodology used to collect and process information, and online database 
structures into which the Department will place future data. 
 
The below ground storage site inventory presents an evaluation of the physical capacity of 
regional aquifers in Oregon to accept water into storage.  This assessment provides a tool for 
communities and individuals to assess whether underground storage is an option for them.  
This study does not replace the need for site-specific investigation to identify aquifer 
variability and storage feasibility.   
 
The study collected existing aquifer data about more than 50 hydrogeologic units statewide.  
A weighted aquifer rating system assessing the physical capacity of aquifers to accept water 
into storage indicates that approximately 30% of aquifers are highly suitable.  A secondary 
analysis of storage capacity suggests there is more than 8.4 x 107 ac-ft of potential 
underground storage available statewide, based on storage coefficient, depth to static water 
level and aquifer extent.   
 
The most suitable aquifers include the Columbia River Basalt Group, which is 
hydrogeologically unique due to their low vertical hydraulic conductivity combined with 
distinct flow tops, bottoms and interflow zones that have high horizontal hydraulic 
conductivity.  This characteristic makes them a favorable environment for Aquifer Storage 
and Recovery (ASR).  Glacial flood deposits of north-central Oregon are a favorable 
hydrogeologic environment for spreading basin-style recharge.  
 
The least suitable aquifers include low-yield marine sedimentary and volcanic units of the 
Coast Range, low permeability metamorphic rocks of the Klamath Mountains, and low-yield 
volcanics of the Western Cascades. 
 
A searchable online database and interactive map feature, located at www.wrd.state.or.us, 
presents data, analysis and source documents.  The Department intends to update the database 
and related documents as new information becomes available.  
 
Site-specific investigation is essential before implementation of any project, including 
consideration of local aquifer characteristics, infrastructure, water availability, cost-benefit 
relationships, water quality, and authorization requirements.  However, this study does 
indicate that there is significant potential for expanded underground storage in Oregon.  It is a 
useful tool for water managers across the state, in combination with conservation, efficiency 
and traditional water storage methods. 
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Introduction to Underground Storage in Oregon: 

Methods, Activities and Authorizations 
 
 
 Background 
 As Oregon population, climate and water needs evolve over time, water 
management techniques must also adapt.  Underground storage can be a useful tool 
that lends flexibility to water supply timing and availability, while avoiding some of 
the costs and environmental impacts of above ground storage.  Current techniques 
include injection of treated surface water into aquifers and surface water spreading 
that allows infiltration down to the water table.  Many projects later recover the water 
for municipal or agricultural use; others may allow it to move through the aquifer and 
discharge to the surface to enhance stream flow.  Underground storage has increased 
dramatically in the last decade. 
 
 
 

Annual Underground Storage in Oregon
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Figure 1.  Annual underground storage in Oregon has tripled since 2000. 
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Injection and recovery wells 

• A typical injection and recovery system relies on surface water withdrawn 
during times of low demand, treats it to drinking water quality standards and 
injects it into an aquifer.  

• During subsequent periods of high demand, the system pumps out (recovers) 
stored water at the same well, treats the water as necessary to drinking water 
quality, and adds it to the distribution system.   

• An injection system usually stores water in deep or confined aquifers (water-
bearing zones that are bounded above and below by low permeability layers). 

 

 
 
Figure 2. In a municipal injection and recovery system, surface water is treated 
to drinking water quality, stored underground, and later withdrawn and 
distributed to water customers. 
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Recharge by surface spreading 

• A typical infiltration system spreads water into shallow basins or canals, which 
allow infiltration into the underlying aquifer.  Water quality must meet the 
Oregon Department of Environmental Quality’s anti-degradation standards.   

• Recharge through infiltration occurs in unconsolidated or highly fractured 
aquifers that are close to the ground surface. 

• Water users recover stored water through nearby wells.  In other situations, the 
water flows underground and into streams to increase flow or improve water 
quality for fish and wildlife. 

 
 

 
Figure 3.  In a typical spreading basin project, water infiltrates through shallow 
basins or canals.  Withdrawal occurs down gradient through a well or the water 
discharges to the surface and augments stream flow. 
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Why use these techniques in Oregon? 

• The state receives nearly two-thirds of its precipitation during the winter 
months, with a pronounced dry summer season on both sides of the Cascades.  

• Storage is necessary because water use peaks during the dry season due to 
increased irrigation and municipal use, while surface water supply is at its 
lowest.   

• Many communities have surface water rights in the high flow months that they 
are not fully utilizing.  ASR and AR provide a mechanism to capture and store 
some of this flow.  Underground storage can have a lower impact on fish 
passage than traditional dams. 

 
 
 

 
 
Figure 4.  In Oregon, surface water flow peaks in winter months; conversely, 
demand peaks in summer months (graphic courtesy of Washington Department 
of Ecology).  Conservation measures combined with storage of some of this peak 
flow is necessary to meet demand. 
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Feasibility Considerations 
 Many factors affect whether underground storage is feasible at a given site.  
While this study focuses on the physical capacity of regional aquifers to accept water, 
the following issues require site-specific evaluation: 

• Surface water availability (rate and timing) 
• Local aquifer complexity and boundaries 
• Storage capacity vs. storage needs 
• Water quality before and after storage 
• Water treatment requirements 
• Proximity to other wells 
• Infrastructure availability and capacity   
• Cost-benefit  

 
Although underground storage can be less expensive than constructing above 

ground storage facilities, the cost can still be significant.  Expenses vary, but the 
following actions are necessary: 

• First, conduct a feasibility study that includes hydrogeologic site 
characterization, water quality and water level monitoring. 

• Second, evaluate and improve infrastructure, such as pumping systems, pipes, 
water treatment filtration and disinfection systems, monitoring and injection 
wells. 

• Ongoing maintenance, water quality and water level monitoring will be part of 
any underground storage project operation. 
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Authorization of Underground Storage Projects in Oregon 

Two permitting paths exist for underground storage in Oregon:  Aquifer 
Storage and Recovery (ASR) and Artificial Ground Water Recharge (AR).   The 
authorization process occurs through Oregon Water Resources Department (OWRD), 
which coordinates input from Oregon Department of Environmental Quality (ODEQ), 
Oregon Department of Human Services (ODHS) and Oregon Department of Fish and 
Wildlife (ODFW).   

 
Figure 5.  Underground storage sites (as of December 2008) are located in the 
northern portion of Oregon, where geology, water availability and cost-benefit 
circumstances create a favorable environment for this water management tool.   
 
ASR in Oregon 

• There are currently eleven ASR test sites in Oregon.  
• Municipal operations are located in Beaverton, Tualatin, Tigard, Salem, 

Clackamas, Happy Valley/Damascus, Baker City, Pendleton, and Dallas.   
• Two agricultural projects near Hermiston are testing ASR.   
• Ten sites store water in basalt aquifers. 
• One project targets an alluvial aquifer.  

11



 

 
Figure 6.  Agricultural ASR well near Hermiston, Oregon 

 
 
 
 
ASR authorization in Oregon  

• ASR projects are required to test operations under an ASR limited license 
before applying for an ASR permit. 

• Existing surface water rights generally provide the source water for storage.   
Use of the stored water must conform to that described under the existing right.   

• ASR requires well injection as the storage technique.  Injection water must be 
treated to drinking water standards, so ASR from a surface water source may 
require both filtration and disinfection infrastructure before injection 

• The operator may recover up to 100% of that stored but is typically less, to 
account for water migration in the aquifer environment. 

• ASR is described by statute and rule in ORS 537.531-.534 and OAR 690-350.   
• Due to the complexities and costs associated with recharge projects, a 

pre-application conference with OWRD staff is required. 
   

12



 
Figure 7.  AR project near Milton-Freewater, Oregon 

 
AR in Oregon 

• There are five authorized AR sites in Oregon, with purposes including 
irrigation and domestic water supply augmentation, water level decline 
mitigation, and stream flow enhancement. 

• Projects include the County Line Water Improvement District in 
Morrow/Umatilla Counties, Buell-Red Prairie Domestic Water Association in 
Polk County, Hudson Bay District Improvement Company, and Walla Walla 
River Irrigation District in Umatilla County.   

• Additionally, an agricultural ASR site near Echo, in the Umatilla Basin, uses 
AR to filter surface water before injecting it into an ASR well. 

 
 
AR authorization in Oregon 

• Source water for AR must meet anti-degradation standards of Oregon 
Department of Environmental Quality (ODEQ).  This means that the recharge 
water must maintain the aquifer water at its original quality or better.  Raw 
surface water sometimes meets these standards, but periodic water quality 
monitoring is necessary.     

• AR projects require a new permit to divert water for the purpose of aquifer 
recharge and a secondary groundwater permit to extract this water.  AR and 
secondary permit holders need not be the same entity.   
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• If the source water does not have an in-stream water right, the project requires 
an ODFW (Oregon Department of Fish and Wildlife) waiver before permit 
issuance. 

• AR projects may use well injection or infiltration as the means to store.  
• AR is described by statute and rule in ORS 537.135 and OAR 690-350. 
• Due to the complexities and costs associated with recharge projects, a pre-

application conference with OWRD staff is required. 
 
 
 

Objectives and Scope of Study 
 

The overarching goal of the Oregon Water Supply and Conservation Initiative 
(OWSCI) is to provide a foundation for improved long-term water resource planning.  
The Initiative includes statewide water demand forecasting, an inventory of potential 
conservation opportunities, identification of potential above and below ground storage 
sites, and community water planning grants.  In addition to data collection, two 
important products resulting from this Initiative include the methodology used to 
collect and process information, and the online database structures into which the 
Department will place future data.   

The primary goal of this study is to present a statewide evaluation of the physical 
capacity of aquifers in Oregon to accept water into underground storage.  The project 
team collected aquifer data from the U.S. Geological Survey, Oregon Water Resources 
Department groundwater studies, databases, well log reports and consultants’ studies.  
This evaluation provides a tool for communities and individuals to assess whether 
underground storage is an option for them.  Specifically, this study includes the 
following objectives: 

 
• Conduct a state-wide study  
• Assemble data about existing underground storage projects in Oregon  
• Collect the range of aquifer parameters available for selected geologic units 
• Construct a searchable database of these parameters  
• Analyze this data for each aquifer’s physical ability to accept water into storage 
• Present data and its interpretation on the Department website 
 
These parts form a starting point for decision makers considering underground 

storage.  When the underground assessment is considered along with the other 
Initiative products, interested parties can integrate long-term demand forecasting with 
storage and conservation planning.  Interested parties can also combine this 
information with new site-specific data to refine their water supply planning.   
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Aquifer Assessment Methods 
 
This study focuses on hydrogeologic suitability for underground storage.  It is a 

general, regional assessment of aquifers.  Therefore, site-specific investigation is 
necessary to evaluate local variations in aquifer parameters.  

An aquifer rating system examines the physical capacity of aquifers to accept 
water into storage.  The five evaluated parameters in the aquifer rating system include 
depth to target formation, saturated thickness, head freeboard (depth to static water), 
storage coefficient, and hydraulic conductivity.  A secondary analysis estimates the 
storage capacity available beyond what naturally occurring groundwater occupies. 
 
 
Previous Studies 
Data and analysis methods from previous studies influenced the design of this project.  
The following works are referenced: 
 

• Robison (1968) completed an Open-File Report for the U.S. Geological Survey 
that analyzed aquifers across Oregon and estimated storage potential for each.  
Results indicated that approximately 57 million acre-feet of storage was 
available across the state in underground potential. 

• Topper et al. (2004) developed a method to prioritize large-scale aquifers 
across Colorado for aquifer recharge potential.   

• Woody (2008) completed a statewide study of aquifer suitability for Aquifer 
Storage and Recovery (ASR), using a site rating system and a metric that 
compared current water rights to aquifer storage capability.  Results identified 
approximately 500,000 acre-feet of potential underground storage associated 
with municipal wells. 

 
 
How does the rating system work? 

For each evaluated aquifer, the rating system requires a sampling of data that 
provides a range of aquifer parameter values, as well as an average or most typical 
value.  The analysis also requires identifying the aquifer as either consolidated 
bedrock or unconsolidated, so some generalization about regional geologic units is 
required.  The weighted rating system varies based on this distinction.  The analysis 
process is as follows: 
 

• The appropriate rating system is selected for either a consolidated or an 
unconsolidated aquifer.   

• Due to aquifer complexity and variability, a range of values is reported for each 
parameter.  An average value is identified for each parameter, as well as the 
data quality.  For example, hydraulic conductivity determined from a 72-hour 
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aquifer test would be of a higher data quality than that estimated from specific 
capacity and the open interval of a well.     

• A rating is selected for each parameter, weighted for its importance to storage 
potential.  The parameter ratings are totaled to represent an overall rating for 
the aquifer.        

• This system produces a percentage of ideal physical parameters for artificial 
recharge found in a given aquifer.  It is important to recognize that an aquifer 
that has 100% of ideal parameters for underground storage will rarely exist in 
nature.  Existing sites in Oregon typically possess about 60% of ideal 
conditions for aquifer recharge.   

• The system accommodates the flexible relationship between aquifer 
parameters.  For example, a high hydraulic conductivity may compensate for a 
small saturated thickness in terms of the aquifer’s capacity to accept water into 
storage. 

 
 
Evaluated aquifer parameters 
 Each aquifer parameter has a different impact on storage potential.  The 
weighted rating system approximates this complexity as follows: 
 

• Depth to formation top: In general, a small depth to a geologic formation 
receives a higher rating than a large depth.  This is because it is more expensive 
to recharge and recover water from a deep aquifer than a shallow one, due to 
power requirements to lift the water and well construction costs.  There is some 
nuance to this rating.  An unconsolidated aquifer is most easily recharged when 
it is located at the surface, through spreading basins. However, a consolidated 
aquifer is most likely recharged by injection wells, and a moderate depth to 
formation suggests less potential for leakage through fractures than if the 
formation is located at the surface.    

• Unit thickness: As thickness increases, so does an aquifer’s capacity for 
recharge.  Conversely, water stored in a thin aquifer must spread out from the 
well, and may move beyond a recoverable radius from the well.   

• Head freeboard: This refers to the depth to static water in a well, or the head 
space in a well that can accommodate water level rise during recharge 
operations.  A small head freeboard presents the risk of raising the water level 
close to the surface in an unconfined aquifer.  In a confined aquifer with a small 
head freeboard, increasing the pressure in the aquifer risks pushing water to the 
surface through other wells or fractures.  In general, storage capacity rises with 
increasing head freeboard.   

• Storage coefficient: Storage coefficient is defined as the volume of water an 
aquifer releases from, or takes into storage, per unit area of aquifer per unit 
change in head (resulting in units such as ft3/(ft2*ft), or ft3/ft3).  This results in a 
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dimensionless property.  For recharge, a higher storage coefficient indicates a 
greater storage capacity and is therefore preferable.  

• Hydraulic conductivity: This is generally defined as the volume of water per 
unit time that passes though a unit area of an aquifer material in response to a 
unit hydraulic head gradient (resulting in units such as (ft3/d)/(ft2), or ft/d).  The 
term incorporates aquifer properties and the water’s density and viscosity.  Low 
hydraulic conductivity indicates a site with low artificial recharge potential.  
Injection and recovery rates, as well as total storage capacity will be directly 
proportional to this factor.     

 
Examples of the Aquifer Rating System 
 As illustrated below in the examples of aquifer rating tables, the weighting of 
aquifer parameters varies for unconsolidated and consolidated aquifers.  This reflects 
the different hydraulic characteristics of these aquifers; for example, sandy deposits 
accept water differently than fractured bedrock. 
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Table 1.  Example of the Aquifer Rating System for a Consolidated Unit, where yellow highlight indicates the 
selected ratings: 

 
Find the “value range” where the “value for calculation” falls,  

and select the corresponding rating 

 

 
 
 
 
 
 
Physical 
Parameter 
 

 
 
 
 
Range 
of 
reported 
values 
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Selected
Rating 

 
 
 
 
 
 
Data 
Quality

Depth to  
Formation (ft) 

 
20-500 

 
90 

 
0-99 

 
10 

 
100-
499 

 
20 

 
500-999 

 
15 

 
1000-1999

 
3 

 
>2000

 
1 

 
10 

 
3 

Saturated 
Thickness (ft) 

 
6-250 

 
111 

 
0-99 

 
1 

 
100-
249 

 
3 

 
250-499 

 
  
 

 
500-999 

 
15 

 
>1000

 
30 

 
3 

 
3 

Head 
Freeboard (ft) 

 
0-65 

 
29 

 
0-49 

 
1 

 
50-99 
 

 
2 

 
100-299 

 
6 

 
300-749 

 
15 

 
750 

 
30 

 
1 

 
3 

Storage 
Coefficient 

 
0.02 

 
0.02 

 
0-
0.0009

 
1 

 
0.001-
0.009 

 
5 

 
0.01-
0.09 

 
10 

 
>0.1 

 
25 

 
 

  
10 

 
4 

Hydraulic 
Conductivity 
(ft/d) 

 
0.04-17 

 
4 

 
0- 
0.0009

 
1 

 
0.001-
0.009 

 
5 

 
0.01-0.9 

 
10 

 
1-9 

 
50 

 
>10 

 
100 

 
50 

 
3 

                                                                                                                                                                               Totals:    74 16 
Sum of Selected Ratings/Perfect Rating = 74/205 = 36% 

Data Quality:  1=based on general values for this aquifer lithology 
 2=based on 10 or less well logs 

3=based on more than 10 well logs 
4=based on published information and/or data specific to this aquifer 
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Table 2.  Example of the Aquifer Rating System for an Unconsolidated Unit, where yellow highlight indicates 
selected ratings: 

 
Find the “value range” where the “value for calculation” falls,  

and select the corresponding rating 
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Parameter 
 

 
 
 
 
 
Range 
of 
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Selected
Rating 

 
 
 
 
 
 
 
Data 
Quality

Depth to  
Formation 
(ft) 

 
0-4 

 
2 

 
0-4 

 
20 

 
5-9 

 
15 

 
10-24 

 
10 

 
25-49 

 
3 

 
>50 

 
1 

 
20 

 
2 

Saturated 
Thickness 
(ft) 

 
30-340 

 
173 

 
0-19 

 
1 

 
20-39 

 
2 

 
40-79 

 
4 

 
80-159 

 
8 

 
>160 

 
10 

 
10 

 
2 

Head 
Freeboard 
(ft) 

 
8-245 

 
94 

 
0-4 

 
1 

 
5-9 

 
2 

 
10-19 

 
4 

 
20-29 

 
8 

 
>30 

 
50 

 
50 

 
2 

Storage 
Coefficient 

 
0.10-
0.25 

 
0.18 

 
0-
0.09 

 
1 

 
0.1- 
0.14 

 
5 

 
0.15-
0.19 

 
10 

 
0.2-0.24 

 
25 

 
>0.25 

 
50 

 
10 

 
4 

Hydraulic 
Conductivity 
(ft/d) 

 
0.29-19 

 
3 

 
0-0.9 

 
1 

 
1-9 

 
5 

 
10-99 

 
10 

 
100-999 

 
25 

 
>1000 

 
50 

 
5 

 
2 

                                                                                                                                                                                 Totals =   95            12 
Sum of Selected Ratings/Perfect Rating = 95/180 = 53% 

Data Quality:  1=based on general values for this aquifer lithology 
 2=based on 10 or less well logs 

3=based on more than 10 well logs 
4=based on published information and/or data specific to this aquifer
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Storage Capacity Estimates 
 In addition to the aquifer rating system, this study also estimates the storage 
capacity of aquifers by quantifying how much “unused” storage exists under 2008 
conditions.  A basic estimation of available storage is calculated as follows: 
 

Volume = hSA Δmax  
 

Where S is the storage coefficient, A is the aquifer extent or area, and max Δh is the 
depth to static water level.  This is a simplification of the natural system, and assumes 
the aquifer has a constant storage coefficient and thickness throughout its extent.  To 
be conservative, the static water level selected represents an aquifer’s seasonal high, 
and a high water level limit of 20 feet below the surface was selected as a factor of 
safety.  The aquifer extent was estimated when possible from geologic maps.  Despite 
these assumptions, this method provides an indication of the potential storage capacity 
of the aquifer, and a point to compare between various aquifers in terms of their 
potential for underground storage.   

 
Results Summary and Discussion 

 
General Conclusions about Oregon Aquifers and Underground Storage 

Oregon has a variety of aquifers.  The north and northeastern portion of the 
state is characterized by extensive flood basalts of the Columbia River Basalt Group, 
which are hydrogeologically unique due to their low vertical conductivity combined 
with distinct flow tops, bottoms and interflow zones that have high horizontal 
conductivity.  This characteristic makes them a favorable environment for ASR in 
some places.  A mix of volcanics and sediments characterizes central and south-
central Oregon, with highly variable hydraulic conductivity and suitability for aquifer 
recharge.  The Coast Range consists of low-yield marine sedimentary and volcanic 
deposits, while the Klamath Mountains of Southwest Oregon consist of low 
permeability metamorphic rocks.  Neither of these represent desirable aquifer recharge 
environments.  The Willamette Valley consists of a variety of ice-age flood deposits 
and more recent alluvial deposits, with varying clay content.  Some of the alluvial 
deposits have been tested for ASR with varying degrees of success. Closed basins 
throughout south-central and southeastern Oregon have generally low to moderate 
hydraulic conductivity; there may be opportunities for spreading basin-style recharge 
in some areas, although clay content will preclude recharge in other areas.  Surface 
spreading basins and canals successfully recharge alluvium and glacial deposits of 
north-central Oregon and southeastern Washington. 
 
 
Figure 8.  On the following page:  Generalized geologic map of Oregon, where 
units are grouped by similar hydrogeologic characteristics. 
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OWSCI: Underground Storage Assessment  

Summary of Results 
 The underground storage assessment database includes aquifer characteristics 
and underground storage suitability information on more than 50 Oregon aquifers.  It 
provides information on aquifers of varying storage capacity and, to the extent 
possible, represents an even geographic distribution across the state. While the 
specifics about each aquifer are accessible through the website, the following general 
conclusions are offered:  
 

• Favorable hydrogeologic conditions for underground storage exist in both 
consolidated and unconsolidated aquifers across the state. 

 
• The weighted aquifer rating system indicates that approximately one-third of 

aquifers statewide have potential as significant underground storage sites. 
 

• According to this assessment system, existing Oregon underground storage 
sites have 39 to 62% of ideal conditions.  No evaluated aquifers have 80 to 
100% of ideal conditions.  Considering these are natural geologic systems it is 
reasonable that they are not theoretically ideal.  This also demonstrates that 
there is flexibility in the aquifer characteristics that will support underground 
storage.   

 
• Columbia River Basalt Group aquifers score highest.  These layered volcanic 

units contain highly permeable zones between dense layers of lava.  This 
creates an environment that is conducive to underground storage by injection 
and recovery.   

 
• Other aquifer types with storage potential include unconsolidated units of 

glacial and fluvial origin found in valleys and closed basins.  These units may 
be conducive to storage through basin or canal infiltration or by injection and 
recovery, depending on local conditions.   

 
• Aquifers with less storage potential include Coast Range marine sedimentary 

rock, Western Cascades volcanics and Klamath Mountains metamorphics, 
although there may be local exceptions within these units.    

 
Figure 9.  On the following page:  Surficial geologic map of Oregon, where units 
are color coded for relative underground storage suitability.  Red indicates little 
storage, while green stripes indicates high suitability.  Geologic units overlap, so 
the delineated suitability refers to the approximate extent of the most feasible 
aquifer in the vicinity. 
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OWSCI: Underground Storage Assessment  

Table 3.  The following list presents regional aquifer ratings and storage capacity estimates.  Storage estimates assume 
that a project would not raise water closer than 20 feet below ground surface.  Consequently, aquifers with a typical 
depth to water less than 20 feet are assigned zero storage capacity and a low storage priority.  Site-specific investigation 
is important to clarify when a water level less than 20 feet below the surface is acceptable. 
 
 

Storage 
Priority Aquifer Name 

Percent of Ideal 
Conditions to 
Accept Water 

Estimated 
Storage  

Capacity (ac-ft) 

1 
 
Fort Rock Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers 72% 56,000 

2 
 
Walla Walla Basin Quaternary-Late Tertiary Sediment Aquifers  71% 19,000 

3 
 
Willamette Valley Quaternary-Late Tertiary Sediment Aquifers: Lower Unit 69% 20,000,000 

4 
Deschutes Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers: 
Arc-adjacent Alluvial-plain Facies 67% 1,100,000 

5 
 
Willamette Valley Late Tertiary Basalt Aquifers: Columbia River Basalt Group 65% 34,000 

6 
 
Klamath Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers  62% 2,600,000 

7 
 
Gilliam County Late Tertiary Basalt Aquifers: Columbia River Basalt Group 62% 53,000 

8 
 
Hood Basin Late Tertiary Basalt Aquifers: Columbia River Basalt Group 62% 12,000 

9 
 
Powder Basin Late Tertiary Basalt Aquifers: Columbia River Basalt Group  62% 2,000 

10 
 
North Coast Basin Late Tertiary Basalt Aquifers: Columbia River Basalt Group 62% 4,000 

11 
 
Grande Ronde Basin Late Tertiary Basalt Aquifers: Columbia River Basalt Group 57% 86,000 

12 
Coast Range Tertiary Marine Volcanic and Sedimentary Rock Aquifers: Siletz River 
Volcanics 55% 150 
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Storage 
Priority 

 
 
Aquifer Name 

Percent of Ideal 
Conditions to 
Accept Water 

Estimated 
Storage  

Capacity (ac-ft) 

13 
Umatilla Basin Quaternary-Late Tertiary Sediment Aquifers: Coarse-Grained Flood 
Deposits 54% 

 
520,000 

14 
Deschutes Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Aquifers: 
Ancestral Channel Deposits 52% 2,200 

15 
 
Cow Valley Quaternary-Late Tertiary Sediment Aquifer 47% 150 

16 
Deschutes Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers: 
Inactive Margin Facies 45% 500 

17 
 
Blitzen Area Quaternary-Late Tertiary Sediment Aquifers 45% 280,000 

18 
 
Prineville Area Quaternary-Late Tertiary Sediment Aquifers 43% 200 

19 
 
Umatilla Basin Late Tertiary Basalt Aquifers: Columbia River Basalt Group 42% 1,400,000 

20 
Deschutes Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers: 
Proximal Lava Flows 41% 5,000 

21 
John Day Basin Middle-Early Tertiary Volcanic and Volcaniclastic Rock Aquifers: Clarno 
Formation 40% 22,000 

22 
 
Klamath Basin Quaternary-Late Tertiary Sediment Aquifers 39% 1,300,000 

23 
 
Owyhee Basin Late Tertiary Basalt Aquifers 39% 33,000 

24 
 
Brothers Area Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers   38% 15,000 

25 
 
Umpqua Basin Tertiary Marine Volcanic and Sedimentary Rock Aquifers  38% 23,000 

 
    26 

 
Warner Valley Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers  

 
36% 

 
8,900 
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Storage 
Priority Aquifer Name 

Percent of Ideal 
Conditions to 
Accept Water 

Estimated  
Storage  

Capacity (ac-ft) 

27 
 
North Coast Basin Tertiary Marine Volcanic and Sedimentary Rock Aquifers  35% 8,100 

28 
 
Willamette Valley Quaternary-Late Tertiary Sediment Aquifers: Upper Unit 33% 75,000 

29 
Drewsey Area Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers: 
Lake Deposits 33% 1,400 

30 
Umpqua Basin Middle-Early Tertiary Volcanic and Volcaniclastic Rock Aquifers: 
Western Cascades Volcanics 33% 1,300 

31 
 
Grant County Late Tertiary Basalt Aquifers: Columbia River Basalt Group 30% 1,700 

32 
 
Rogue Basin Mesozoic Granitic Rock Aquifers 30% 16,000 

33 
 
Burns Area Quaternary-Late Tertiary Sediment Aquifers 28% 3,000 

34 
 
Clatsop County Quaternary-Late Tertiary Sediment Aquifers: Dunes 27% 3,900 

35 
 
La Pine Area Quaternary-Late Tertiary Sediment Aquifers  23% 60,000 

36 
John Day Basin Middle-Early Tertiary Volcanic and Volcaniclastic Rock Aquifers: John 
Day Formation 20% 1,200,000 

37 
 
Baker Valley Quaternary-Late Tertiary Sediment Aquifers 20% 8,900 

38 
 
Eugene Area Middle-Early Tertiary Volcanic and Volcaniclastic Rock Aquifers 20% 1,300 

39 
 
Hood Basin Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers  19% 50 

40 
 
Western Cascades Middle-Early Tertiary Volcanic and Volcaniclastic Rock Aquifers  19% 42,000 

41 
 
Willamette Valley Tertiary Marine Volcanic and Sedimentary Rock Aquifers 17% 1,500,000 
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Storage 
Priority Aquifer Name 

Percent of Ideal 
Conditions to 
Accept Water 

Estimated  
Storage  

Capacity (ac-ft) 
 

42 La Grande Area Quaternary-Late Tertiary Sediment Aquifers 17% 130,000 

43 
Rogue Basin Tertiary Marine Volcanic and Sedimentary Rock Aquifers: Payne Cliffs 
Formation 16% 200 

 
44 

 
High Cascades Quaternary-Late Tertiary Volcanic and Volcaniclastic Rock Aquifers  

 
16% 

 
1,200 

45 
 
Jordan Valley Quaternary-Late Tertiary Sediment Aquifers 15% 100 

46 
 
Lakeview Area Quaternary-Late Tertiary Sediment Aquifers 14% 300 

47 
 
Middle Coast Range Tertiary Marine Volcanic and Sedimentary Rock Aquifers  13% 3,900 

48 
 
Willamette Valley Quaternary-Late Tertiary Sediment Aquifers: Silt  10% 0 

49 
 
John Day Basin Quaternary-Late Tertiary Sediment Aquifers 61% 0 

50 
 
Middle Coast Basin Quaternary-Late Tertiary Sediment Aquifers: Dunes 53% 0 

51 
 
Willamette Valley Quaternary-Late Tertiary Sediment Aquifers: Middle Sedimentary Unit 39% 0 

52 
 
Coos Bay Area Quaternary-Late Tertiary Sediment Aquifers: Dunes 33% 0 

53 
 
South Coast Basin Quaternary-Late Tertiary Sediment Aquifers: Marine Terrace Deposits 25% 0 

54 
 
Ontario Area Quaternary-Late Tertiary Sediment Aquifers 22% 0 

55 
 
Tillamook Area Quaternary-Late Tertiary Sediment Aquifers 18% 0 

56 
 
Illinois Valley Quaternary-Late Tertiary Sediment Aquifers 17% 0 
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Future Underground Storage Implementation 
 

This study provides a starting point for underground water storage planning.  
Beyond regional aquifer suitability there are many other factors influencing 
underground storage feasibility.  Implementation of an underground storage project 
also includes consideration of the following: 

 
• Definition of project objectives will determine the appropriate recharge 

techniques.   
• Site-specific study is essential to identify geologic complexity and aquifer 

parameters that are critical to underground storage operations.   
• Water availability, in terms of timing and quantity, may be a limiting factor 

and requires careful investigation. 
• The quality and chemical characteristics of the source water, native 

groundwater and recovered water is a determinant factor in the cost and 
feasibility of the project.   

• Projects must obtain authorization from Oregon Water Resources 
Department to begin testing.  This requires site investigation reporting, site-
specific hydrogeologic data, and pilot test planning. 

• Start-up, monitoring, maintenance costs and benefits vary by site.  
Although underground storage is generally less expensive than above 
ground reservoir construction, water quality monitoring, water level 
monitoring and treatment costs can be significant. 
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Conclusions 
Out-of-stream water demand projections for 2010 (HDR, 2008) are less than 

the potential underground storage found in some basins.  In others, such as coastal, 
Malheur and Rogue basins where geologic units are typically low-permeability, low-
yield bedrock, underground storage is insufficient.  However, underground storage 
may play a part in the overall water management of these basins, in conjunction with 
other methods.   

 

Potential Underground Storage and Projected Out-of-stream 
Demand 2010: By OWRD Administrative Basin
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Figure 10.  Demand projections by HDR (2008) and storage capacity estimates 
from this study indicate that expanded underground storage can help meet need 
in many Oregon basins.  Potential underground storage capacity calculations in 
this figure include only aquifers that scored higher than 39% of ideal conditions 
in the aquifer rating system.   
 

In conclusion, there is significant potential for underground storage in Oregon.  
Experience to date has been largely positive, especially for municipal water systems.  
As new aquifer data become available and climate change shifts Oregon’s water 
supply patterns, future groundwater management should consider underground storage 
as one useful tool in an array of water management alternatives.   
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